About the Company

Golden State Water Company (GSWC) is a wholly owned subsidiary of American States Water Company (NYSE: AWR). GSWC provides water service to more than 1 million people in over 80 communities throughout California. AWR also owns a contracted services subsidiary, American States Utility Services, Inc. (ASUS). ASUS provides operations, maintenance and construction management services for water and wastewater systems located on military bases throughout the country under 50-year privatization contracts with the U.S. government.

President’s Message

Dear Golden State Water Customer,

Golden State Water Company (GSWC) agreed to acquire the Robbins Water System from Sutter County in March 2011. After several years of working with Sutter County and other parties, GSWC was granted the authority to acquire the Robbins water system by the California Public Utilities Commission (CPUC) on May 1, 2022.

As part of our ongoing commitment to providing high quality water, GSWC annually provides customers, state and local health agencies and community leaders with water quality reports. The reports provide detailed information about your water quality, including where your drinking water comes from, what it takes to deliver water to your home or business, and what we do to protect local drinking water sources.

GSWC is pleased to present our new Robbins customers with the 2022 Annual Water Quality Report (Consumer Confidence Report), providing important information regarding local water quality and service during the 2021 calendar year.

GSWC is proud to be the trusted water provider serving local customers and more than 80 communities throughout California, and we appreciate that customers have peace of mind knowing we never stop working to ensure quality, reliable water is available at their taps when they need it.

We recognize the challenges many customers have faced during this pandemic period and now into the continuing drought. During this unprecedented time, our continued dedication to providing the highest levels of service and care to customers has been a driving force for our team of water professionals. We take great pride in the service we provide and embrace our role as essential workers in the community.

Water quality is a top priority for GSWC, and it has been for more than 90 years. Our team of scientists, engineers and water experts is dedicated to protecting our water systems and ensuring the water we deliver to local homes and businesses meets the stringent standards set by the state and federal governments and is safe to drink.

GSWC is working as quickly as possible to return the Robbins Water System to full compliance with all federal and state quality standards established to protect public health and safety. This includes the construction of a new well and treatment system. GSWC continues to provide bottled water for drinking under a State funded grant. Within this document, you will find information regarding local water supply sources, testing, and the steps GSWC takes to ensure our water is in compliance with standards set by the United States Environmental Protection Agency (USEPA), State Water Resources Control Board’s Division of Drinking Water (DDW) and California Public Utilities Commission (CPUC).

To access the most up-to-date Water Quality Report for your area, sampling results, and to learn more about common contaminants, you can visit www.gswater.com/water-quality/. If you have any questions about this report, please contact our 24-hour Customer Service Center at 1.800.999.4033 or email us at customerservice@gswater.com.

GSWC is constantly working toward 100 percent customer satisfaction and encourages all customers to visit www.gswater.com and follow us on Twitter and on Facebook at @GoldenStateH2O.

On behalf of everyone at GSWC, thank you for allowing us the opportunity to serve you and your community.

Sincerely,

Robert Sprowls Paul Schubert

GSWC is constantly working toward 100 percent customer satisfaction and we encourage you to visit www.gswater.com and follow us on Twitter and on Facebook at @GoldenStateH2O
Water delivered to customers in the Robbins System is groundwater pumped from wells operated by GSWC. The Wagner Aviation Well (Well 2) is the primary source of supply. Well 1 (Sacramento Blvd. Well) is in standby use for emergencies. Well 1 was not used during 2021.

Source Water Assessment

A source water assessment was conducted in 2000 for the Wagner Aviation Well. The well is considered most vulnerable to the following activities: Airport maintenance/fueling, sewer collection systems, farm chemical distributor/application services, machine shops, and pesticide/fertilizer/petroleum storage and transfer areas.

A copy of the assessment may be viewed at:

State Water Board Valley District Office
364 Knollcrest Dr., Suite 101, Redding, CA 96002

You may request a summary of the assessment be sent to you by contacting:

State Water Board Valley District Office at 1.530.224.4800.

For more details, contact Lisa Miller, Water Quality Engineer, at 1.800.999.4033, or email the Customer Service Center at customerservice@gswater.com.

Where Does My Water Come From?

In every one of our water systems, a team of highly-trained employees monitors water quality on an on-going basis to ensure that our customers are receiving high-quality water.
Delivering drinking water is serious business, and our team of scientists, engineers and water experts is dedicated to protecting our water systems and ensuring the water we deliver to local homes and businesses meets stringent standards set by the state and federal governments and is safe to drink.

Glossary of Terms

Maximum Contaminant Level (MCL)
The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the public health goals and maximum contaminant level goals as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

California Notification Level (NL)
Non-regulatory, health-based advisory levels established by the State Board for contaminants in drinking water for which an MCL has not been established.

Maximum Contaminant Level Goal (MCLG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. Maximum contaminant level goals are set by the United States Environmental Protection Agency (USEPA).

Maximum Residual Disinfectant Level (MRDL)
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard (PDWS)
MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Public Health Goal (PHG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. Public health goals are set by the California Environmental Protection Agency (CalEPA).

Regulatory Action Level (AL)
The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

<table>
<thead>
<tr>
<th>Unit of Measurement</th>
<th>Unit Abbreviation</th>
<th>Also Known as</th>
<th>This can be compared to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts per million (PPM)</td>
<td>mg/L</td>
<td>milligrams per liter</td>
<td>1 second in 12 days</td>
</tr>
<tr>
<td>Parts per billion (PPB)</td>
<td>µg/L</td>
<td>micrograms per liter</td>
<td>1 second in 32 years</td>
</tr>
<tr>
<td>Parts per trillion (PPT)</td>
<td>ng/L</td>
<td>nanograms per liter</td>
<td>1 second in 32,000 years</td>
</tr>
<tr>
<td>Grains per gallon</td>
<td>grains/gallon</td>
<td>a measurement for water hardness often used for sizing household water softeners</td>
<td>1 grain/gal equals 17.1 mg/L of hardness</td>
</tr>
<tr>
<td>Nephelometric Turbidity Units</td>
<td>NTU</td>
<td>a measurement of the clarity of water</td>
<td>Turbidity in excess of 5 NTU is noticeable to the average person</td>
</tr>
<tr>
<td>Microsiemens per centimeter</td>
<td>µS/cm</td>
<td>a measurement of a solution’s ability to conduct electricity</td>
<td></td>
</tr>
<tr>
<td>Picocuries per liter</td>
<td>pCi/L</td>
<td>a measurement of radioactivity in water</td>
<td></td>
</tr>
</tbody>
</table>
Robbins Water System – Source Water Quality

Primary Standards – Health Based (units)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (µg/L)</td>
<td>10</td>
<td>0.004</td>
<td>ND - 10</td>
<td>0.1</td>
<td>2021</td>
<td>Erosion of natural deposits; residue from some surface water treatment processes</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>1</td>
<td>2</td>
<td>n/a</td>
<td>0.73</td>
<td>2019</td>
<td>Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>2.0</td>
<td>1</td>
<td>n/a</td>
<td>0.18</td>
<td>2019</td>
<td>Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
</tbody>
</table>

Secondary Standards – Aesthetic (units)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Secondary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color (units)</td>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
<td>3</td>
<td>2019</td>
<td>Naturally-occurring organic materials</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>500</td>
<td>n/a</td>
<td>116 - 1280</td>
<td>1210</td>
<td>2019</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Iron (µg/L)</td>
<td>300</td>
<td>n/a</td>
<td>19 - 63</td>
<td>44</td>
<td>2019</td>
<td>Leaching from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Manganese (µg/L)</td>
<td>50</td>
<td>n/a</td>
<td>8.4 - 34</td>
<td>25</td>
<td>2019</td>
<td>Leaching from natural deposits</td>
</tr>
<tr>
<td>Specific Conductance (µS/cm)</td>
<td>1600</td>
<td>n/a</td>
<td>3700 - 3800</td>
<td>3700</td>
<td>2019</td>
<td>Substances that form ions when in water; seawater influence</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1000</td>
<td>n/a</td>
<td>2400 - 2900</td>
<td>2600</td>
<td>2019</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
<tr>
<td>Turbidity (units)</td>
<td>5</td>
<td>n/a</td>
<td>n/a</td>
<td>2.8</td>
<td>2019</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

Other Parameters (units)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Notification Level</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>180</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>120</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Hardness [as CaCO₃] (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>582</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Hardness [as CaCO₃] (grains/gal)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>34</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Magnesium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>89</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>pH (pH units)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>7.97</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>340</td>
<td>2019</td>
<td>The sum of polyvalent cations present in the water; generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
</tbody>
</table>

(a) The treated water from Well #2 exceeds the MCL of 10 ppb for arsenic. GSWC is working as quickly as possible with the California Division of Drinking Water to resolve the violation with the construction of a new well and treatment system. GSWC is providing bottled water for drinking purposes.

(b) Chloride, specific conductance, and TDS were found at levels that exceed their respective secondary MCLs at Well #2. GSWC is working as quickly as possible with the Division of Drinking Water to resolve the exceedances with the construction of a new well and treatment system.

ND = Not Detected
CaCO₃ = Calcium Carbonate

This table includes data only on constituents that were detected.
Laboratory Analyses

GSWC has taken thousands of water samples throughout our systems to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants in drinking water. The data in this report was collected by Sutter County, before GSWC began operation of the system. The table provided shows only detected contaminants in the water.

We feel it is important that you know exactly what was detected and how much of these substances were present in your water. Compliance (unless otherwise noted) is based on the average level of concentration below the MCL. The state allows water utilities to monitor for some contaminants less than once per year because the concentrations do not change frequently. Some of the data, while representative, is more than a year old.

Arsenic — The treated water from Well #2 exceeds the MCL for arsenic. Because of the high arsenic levels, GSWC provides bottled water for drinking. GSWC is working as quickly as possible with the California Division of Drinking Water to resolve the violation with the construction of a new arsenic removal system. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory problems, and may have an increased risk of getting cancer.

Chloride — The secondary MCL for chloride is set for aesthetic reasons and the presence of chloride in drinking water is generally not considered to be harmful to humans or animals. The most noticeable effect of high chloride is a salty taste and the possibility of hypertension. If a water softener is being used, the taste will be even more pronounced.

Lead — If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. GSWC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information about lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1.800.426.4791 or at http://www.epa.gov/safewater/lead.

Specific Conductance — The secondary MCL for specific conductance is set for aesthetic reasons and the presence of specific conductance in drinking water is generally not considered to be harmful to humans or animals. Specific conductance is water's ability to carry electrical current.

Total Dissolved Solids — The secondary MCL for total dissolved solids is set for aesthetic reasons. High levels of total dissolved solids in drinking water do not pose any known adverse health risk.

Monitoring Requirements not met for the Robbins Water System

The Robbins Water System failed to monitor as required for drinking water standards during the past year and, therefore, was in violation of the regulations. Even though this failure was not an emergency, as our customers, you have a right to know what you should do, what happened, and what was done to correct this situation.

The water system is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not the drinking water meets health standards. During July 2021, the system failed to monitor for total coliform bacteria. The system is required to collect one coliform bacteria sample each month, but the system failed to collect the sample in July.

What should I do?

тип There is nothing you need to do at this time.

The table below lists the contaminant not properly tested for during the last year, how many samples the system is required to take and how often, how many samples were taken, when samples should have been taken, and the date on which follow-up samples were taken.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Required Sampling Frequency</th>
<th>Number of Samples Taken</th>
<th>When All Samples Should Have Been Taken</th>
<th>When Samples Were or Will Be Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>One distribution sample per month.</td>
<td>The system failed to collect the monthly sample</td>
<td>July 2021</td>
<td>Required monthly coliform sampling resumed in August 2021</td>
</tr>
</tbody>
</table>

What happened? What is being done?

A contracted operator was unfamiliar with the detailed requirements for small systems under these circumstances. The situation was corrected and all samples have been collected since.

Robbins Water System – Distribution Water Quality

<table>
<thead>
<tr>
<th>Disinfection Byproducts and Disinfectant Residuals (units)</th>
<th>Primary MCL (MRDL)</th>
<th>PHG (MRDLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (as Cl2) (mg/L)</td>
<td>(4.0)</td>
<td>(4)</td>
<td>0.2 - 1.7</td>
<td>1.0</td>
<td>2021</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
<tr>
<td>HAAS [Sum of 5 Haloacetic Acids] (µg/L)</td>
<td>60</td>
<td>n/a</td>
<td>8.3 - 8.5</td>
<td>8.5</td>
<td>2021</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>THMs [Total Trihalomethanes] (µg/L)</td>
<td>80</td>
<td>n/a</td>
<td>47 - 51</td>
<td>51</td>
<td>2021</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Constituents (units)</th>
<th>Action Level</th>
<th>PHG (MCLG)</th>
<th>Sample Data</th>
<th>90th % Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (mg/L)</td>
<td>1.3</td>
<td>0.3</td>
<td>None of the 5 samples collected exceeded the action level</td>
<td>0.13</td>
<td>2020</td>
<td>Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lead sampling in schools and residential plumbing</th>
<th>Action Level</th>
<th>PHG</th>
<th>Sample Data</th>
<th>90th % Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
<th>Number of Schools Tested (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (µg/L)</td>
<td>15</td>
<td>0.2</td>
<td>None of the 5 samples collected exceeded the action level</td>
<td>ND</td>
<td>2020</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturer; erosion of natural deposits</td>
<td>0</td>
</tr>
</tbody>
</table>
For People with Sensitive Immune Systems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those individuals with cancer undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, some elderly populations, and infants, can be particularly at risk from infections. These people should seek advice from their health care providers.

The USEPA and Centers for Disease Control issue guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants. To obtain a copy of these guidelines, please call the USEPA's Safe Drinking Water Hotline at 1.800.426.4791.

For additional information, please contact our 24-hour Customer Service Center at 1.800.999.4033 or email us at customerservice@gswater.com.

Risk to Tap and Bottled Water

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline at 1.800.426.4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the layers in the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal or human activity.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Contaminants in Drinking Water Sources May Include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, and farming
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities

Cross Connection Control Program

Golden State Water Company’s Cross Connection Control Program provides a level of certainty that the water in the company’s distribution system is protected from possible backflow of contaminated water from commercial or industrial customers’ premises. For additional information, visit http://www.gswater.com/protecting-our-drinking-water/.

Flushing

Hydrant flushing is an essential maintenance procedure that all water providers must perform periodically to ensure the water delivered to customers meets state and federal drinking water standards. GSWC is using NO-DES (Neutral Output-Discharge Elimination System) flushing in several of our service areas to help flush our distribution systems sustainably.

Traditional hydrant flushing discharges hundreds of thousands of gallons of water onto the street. GSWC’s NO-DES trucks and trailers offer a new maintenance technology, connecting two hydrants to a complex filtration system which cleans the water and returns it to the distribution system.

For more information about hydrant flushing, visit http://www.gswater.com/flushing.
If You Have Questions – Contact Us

For information about your water quality or to find out about upcoming opportunities to participate in public meetings, please contact our 24-hour Customer Service Center at 1.800.999.4033. Visit us online at www.gswater.com or email us at customerservice@gswater.com.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo o hable con alguien que lo entienda bien.

Connect with us to learn more!

Visit www.gswater.com to:
- Access the latest Water Quality Report for your area
- Get the latest updates and news regarding the drought and state/local restrictions
- Learn more about water-use efficiency, including programs and rebates in your area
- Understand your water bill and learn about payment options
- Obtain information about programs for low-income customers (Customer Assistance Program or CAP)
- Sign up to receive email updates about your water service

For additional information, please contact our 24-hour Customer Service Center at 1.800.999.4033 or email us at customerservice@gswater.com.

Infrastructure Investments

Water providers have a duty to maintain the local water infrastructure to ensure that the delivery of reliable, quality water is not compromised. At GSWC, we take that responsibility seriously.

In 2021, GSWC installed approximately 109,200 feet of pipeline, 3,000 service lines and 300 fire hydrants throughout the state. Proactive system investments like these are critical to protect the quality of water we serve to the customers and to avoid the costly and sometimes dangerous effects of deferring maintenance.

Customers interested in learning more about current and completed infrastructure projects in their service areas are encouraged to visit their service area’s webpage at www.gswater.com.

Conserving for California

It’s important that all Californians continue using water responsibly, as many parts of our state are experiencing extreme levels of drought. We must all work together to protect available water supplies. As Californians, it is our duty to make conservation a way of life and protect this precious and scarce resource.

GSWC is proud to be your conservation partner. It is important that we all work together to incorporate water-use efficiency into our daily lives.

To learn more about conservation programs and/or water-use restrictions in your area, please visit www.gswater.com/conservation or call 1.800.999.4033.