South San Gabriel Water System

Consumer Confidence Report on Water Quality for 2021

Providing Quality Drinking Water in California Since 1929

www.gswater.com/SouthSanGabrielCCR facebook.com/GoldenStateH2O @GoldenStateH2O
About the Company

Golden State Water Company (GSWC) is a wholly owned subsidiary of American States Water Company (NYSE:AWR). GSWC provides water service to more than 1 million people in over 80 communities throughout California. AWR also owns a contracted services subsidiary, American States Utility Services, Inc. (ASUS). ASUS provides operations, maintenance and construction management services for water and wastewater systems located on military bases throughout the country under 50-year privatization contracts with the U.S. government.

President’s Message

Dear Golden State Water Customer,

Golden State Water Company (GSWC) is pleased to present our 2022 Annual Water Quality Report (Consumer Confidence Report), providing customers with important information regarding local water quality and service during the 2021 calendar year.

GSWC is proud to be the trusted water provider serving local customers and more than 80 communities throughout California, and we appreciate that customers have peace of mind knowing we never stop working to ensure quality, reliable water is available at their taps when they need it.

We recognize the challenges many customers have faced during this pandemic period and now into the continuing drought. During this unprecedented time, our continued dedication to providing the highest levels of service and care to customers has been a driving force for our team of water professionals. We take great pride in the service we provide and embrace our role as essential workers in the community.

For more than 90 years, water quality has always been a top priority for GSWC. Our team of scientists, engineers and water experts is committed to protecting our water systems and ensuring the water we deliver to local homes and businesses meets the stringent standards set by the state and federal governments and is safe to drink. We aggressively monitor and test for hundreds of contaminants in each of our 38 water systems and have consistently scored among the top water companies for compliance with water quality regulations.

GSWC is proud to report that the water delivered to your tap continues to meet all federal and state quality standards established to protect public health and safety. Within this document, you will find information regarding local water supply sources, testing, and the steps GSWC takes to ensure our water is in compliance with standards set by the United States Environmental Protection Agency (USEPA), State Water Resources Control Board’s Division of Drinking Water (DDW) and California Public Utilities Commission (CPUC).

To access the most up-to-date Water Quality Report for your area, sampling results, and to learn more about common contaminants, you can visit www.gswater.com/water-quality. If you have any questions about this report, please contact our 24-hour Customer Service Center at 1.800.999.4033 or email us at customerservice@gswater.com.

GSWC is constantly working toward 100 percent customer satisfaction and encourages all customers to visit www.gswater.com and follow us on Twitter and on Facebook at @GoldenStateH2O.

On behalf of everyone at GSWC, thank you for allowing us the opportunity to serve you and your community.

Sincerely,

Robert Sprowls Benjamin Lewis

Robert Sprowls
President and
Chief Executive Officer
Golden State Water Company

Benjamin Lewis
General Manager,
Foothill District
Golden State Water Company

Golden State Water is constantly working toward 100 percent customer satisfaction and we encourage you to visit www.gswater.com and follow us on Twitter and on Facebook at @GoldenStateH2O
Where Does My Water Come From?

Water delivered to customers in the South San Gabriel System is groundwater pumped from the Main San Gabriel Basin. The basin underlies the San Gabriel Valley from Alhambra to San Dimas. The water system has the ability to supplement supplies with imported water from the Colorado River Aqueduct and the State Water Project (imported by the Metropolitan Water District of Southern California and wholesaled by the Upper San Gabriel Municipal Water District).

Source Water Assessment

A source water assessment was conducted by Golden State Water Company in June and November 2002 for each groundwater well serving the customers of its South San Gabriel System.

All of the groundwater wells are considered most vulnerable to one or more of the following possible contaminating activities. Contaminants associated with these activities have not been detected in the water supply: active and historic gas stations, injection wells/dry wells/sumps, fire stations, and transportation corridors - roads/streets.

Three of the groundwater wells are considered most vulnerable to one or more of the following activities that have been associated with contaminants detected in the water supply: confirmed leaking underground storage tanks, golf courses, high-density housing, known contaminant plumes, other water supply wells, parks, and schools.

A copy of the assessment may be viewed at:
State Water Board Los Angeles District Office
500 N. Central Ave., Suite 500, Glendale, CA 91203
You may request a summary of the assessment be sent to you by contacting:
State Water Board Los Angeles District Office at 1.818.551.2004
For more details, contact George Zakhar, Water Quality Engineer, at 1.800.999.4033, or email the Customer Service Center at customerservice@gswater.com.
Glossary of Terms

Maximum Contaminant Level (MCL)
The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the public health goals and maximum contaminant level goals as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

California Notification Level (NL)
Non-regulatory, health-based advisory levels established by the State Board for contaminants in drinking water for which an MCL has not been established.

Maximum Contaminant Level Goal (MCLG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. Maximum contaminant level goals are set by the United States Environmental Protection Agency (USEPA).

Maximum Residual Disinfectant Level (MRDL)
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)
The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard (PDWS)
MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.

Public Health Goal (PHG)
The level of a contaminant in drinking water below which there is no known or expected risk to health. Public health goals are set by the California Environmental Protection Agency (CalEPA).

Regulatory Action Level (AL)
The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Unit of Measurement

<table>
<thead>
<tr>
<th>Unit of Measurement</th>
<th>Unit Abbreviation</th>
<th>Also Known as</th>
<th>This can be compared to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts per million (PPM)</td>
<td>mg/L</td>
<td>milligrams per liter</td>
<td>1 second in 12 days</td>
</tr>
<tr>
<td>Parts per billion (PPB)</td>
<td>µg/L</td>
<td>micrograms per liter</td>
<td>1 second in 32 years</td>
</tr>
<tr>
<td>Parts per trillion (PPT)</td>
<td>ng/L</td>
<td>nanograms per liter</td>
<td>1 second in 32,000 years</td>
</tr>
<tr>
<td>Grains per gallon</td>
<td>grains/gallon</td>
<td>a measurement for water hardness often used for sizing household water softeners</td>
<td>1 grain/gal equals 17.1 mg/L of hardness</td>
</tr>
<tr>
<td>Nephelometric Turbidity Units</td>
<td>NTU</td>
<td>a measurement of the clarity of water</td>
<td>Turbidity in excess of 5 NTU is noticeable to the average person</td>
</tr>
<tr>
<td>Microsiemens per centimeter</td>
<td>µS/cm</td>
<td>a measurement of a solution's ability to conduct electricity</td>
<td></td>
</tr>
<tr>
<td>Picocuries per liter</td>
<td>pCi/L</td>
<td>a measurement of radioactivity in water</td>
<td></td>
</tr>
</tbody>
</table>
The consumer confidence report lets you know which constituents, if any, are in your drinking water and how this may affect your health. The constituents presented in this table were detected above the detection limit set by the State Water Resources Control Board. Below is a guide that explains each column of the table.

YOUR WATER MEETS ALL CURRENT FEDERAL AND STATE REQUIREMENTS

South San Gabriel Water System – Source Water Quality

<table>
<thead>
<tr>
<th>Inorganic Constituents</th>
<th>Primary Standards – Health Based (units)</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (mg/L)</td>
<td>2.0</td>
<td>1</td>
<td>0.41 - 0.82</td>
<td>0.61</td>
<td>2019</td>
<td>Erosion of natural deposits; residue from some surface water treatment processes</td>
<td></td>
</tr>
<tr>
<td>Nitrate [as N] (mg/L)</td>
<td>10</td>
<td>10</td>
<td>0.77 - 4.8</td>
<td>3.0</td>
<td>2021</td>
<td>Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Perchlorate (µg/L)</td>
<td>6</td>
<td>1</td>
<td>ND - 2.0</td>
<td>ND</td>
<td>2021</td>
<td>Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.</td>
<td></td>
</tr>
</tbody>
</table>

| Volatile Organic Constituents | Tetrachloroethylene [PCE] (µg/L) | 5 | 0.06 | ND - 0.62 | ND | 2021 | Discharge from factories, dry cleaners, and auto shops (metal degreaser) |

<table>
<thead>
<tr>
<th>Radioactive Constituents</th>
<th>Gross Alpha Activity (pCi/L)</th>
<th>15(a)</th>
<th>(0)</th>
<th>ND - 4.9</th>
<th>ND</th>
<th>2020</th>
<th>Erosion of natural deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium (pCi/L)</td>
<td>20</td>
<td>0.43</td>
<td>2.7 - 4.7</td>
<td>3.9</td>
<td>2019</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Standards – Aesthetic (units)</th>
<th>Secondary MCL</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (mg/L)</td>
<td>500</td>
<td>n/a</td>
<td>10 - 45</td>
<td>26</td>
<td>2021</td>
<td>Runoff/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Specific Conductance (µS/cm)</td>
<td>1600</td>
<td>n/a</td>
<td>420 - 660</td>
<td>550</td>
<td>2021</td>
<td>Substances that form ions when in water; seawater influence</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>500</td>
<td>n/a</td>
<td>33 - 61</td>
<td>43</td>
<td>2021</td>
<td>Runoff/leaching from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Turbidity (units)</td>
<td>5</td>
<td>n/a</td>
<td>ND - 0.11</td>
<td>ND</td>
<td>2021</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1000</td>
<td>n/a</td>
<td>240 - 420</td>
<td>340</td>
<td>2021</td>
<td>Runoff/leaching from natural deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Parameters (units)</th>
<th>Notification Level</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>160 - 200</td>
<td>170</td>
<td>2021</td>
<td>The sum of polyvalent cations present in the water, generally magnesium and calcium; the cations are usually naturally occurring</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>44 - 60</td>
<td>53</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Hardness [as CaCO₃] (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>170 - 240</td>
<td>210</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Hardness [as CaCO₃] (grains/gal)</td>
<td>n/a</td>
<td>n/a</td>
<td>9.9 - 14</td>
<td>12</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Magnesium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>14 - 22</td>
<td>18</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>pH (pH units)</td>
<td>n/a</td>
<td>n/a</td>
<td>7.7 - 8.1</td>
<td>7.9</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Potassium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>1.5 - 1.6</td>
<td>1.6</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>26 - 46</td>
<td>35</td>
<td>2021</td>
<td>Refers to the salt present in the water and is generally naturally occurring</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unregulated Drinking Water Constituents (units)</th>
<th>Notification Level</th>
<th>PHG (MCLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAA6Br (Total of 6 Brominated Haloacetic Acids) (µg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>ND - 2.2</td>
<td>0.77</td>
<td>2020</td>
</tr>
<tr>
<td>HAA9 (Total of 9 Haloacetic Acids) (µg/L)</td>
<td>n/a</td>
<td>n/a</td>
<td>ND - 2.8</td>
<td>0.99</td>
<td>2020</td>
</tr>
</tbody>
</table>

(a) MCL is based on Gross Alpha minus Uranium.

ND = Not Detected
CaCO₃ = Calcium Carbonate

This table includes data only on constituents that were detected.
Laboratory Analyses

Through the years, we have taken thousands of water samples to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants in your drinking water. The table we provide shows only detected contaminants in the water. Even though all the substances listed here are under the Maximum Contaminant Level (MCL), we feel it is important that you know exactly what was detected and how much of these substances were present in your water. Compliance (unless otherwise noted) is based on the average level of concentration below the MCL. The state allows us to monitor for some contaminants less than once per year because the concentrations do not change frequently. Some of our data, while representative, is more than a year old.

Chloramination — The water that may be purchased by GSWC from Metropolitan Water District of Southern California (MWD) to supplement water supplies if needed contains chloramine. Chloramine is added to the water for public health protection. Chloraminated water is safe for people and animals to drink, and for all other general uses. Three special user groups, including kidney dialysis patients, aquarium owners, and businesses or industries that use water in their treatment process, must remove chloramine from the water prior to use. Hospitals or dialysis centers should be aware of chloramine in the water and should install proper chloramine removal equipment, such as dual carbon adsorption units. Aquarium owners can use readily available products to remove or neutralize chloramine. Businesses and industries that use water in any manufacturing process or for food or beverage preparation should contact their water treatment equipment supplier regarding specific equipment needs.

Fluoridation — Fluoride has been added to the water that GSWC may purchase from Metropolitan Water District of Southern California (MWD) to supplement water supplies if needed. Customers should see no difference in the taste, color, or odor of their water as a result of fluoridation. Fluoridation does not change the way you normally use water for fish, pets or cooking. Parents and guardians of children who receive fluoride supplements should consult the child’s doctor or dentist. For information regarding fluoridation of your water, please visit the Division of Drinking Water’s fluoridation website at https://www.waterboards.ca.gov/drinking_water/certlic/drinkwater/Fluoridation.html.

Lead — If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. GSWC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information about lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1.800.426.4791 or at http://www.epa.gov/safewater/lead.

Perfluoralkyl and Polyfluoralkyl Substances (PFAS) — Per- and polyfluoralkyl substances (PFAS) are a group of man-made chemicals that include Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS) and Perfluorobutane Sulfonic Acid (PFBS). PFOA and PFOS can be found in a wide range of consumer products such as carpets, cookware and stain repellant, as they are resistant to water, grease and stains. PFOA and PFOS have also been used for suppressing certain types of fires, primarily at airfields and military bases. PFBS was developed and manufactured to replace the eight-carbon chain PFOS.

While consumer products and food are a large source of exposure to these chemicals for most people, drinking water can be an additional source in the communities where these chemicals have infiltrated water supplies. Such contamination is typically localized and associated with a specific facility, such as an industrial facility where these chemicals were produced or used to manufacture other products; an airfield at which they were used for firefighting; or wastewater treatment plants or landfills where products containing the chemicals were disposed of. On Aug. 23, 2019, the California State Water Resources Control Board (SWRCB) updated state guidelines that lower the current notification levels to 5.1 parts per trillion (PPT) for PFOA and 6.5 PPT for PFOS. On Feb. 6, 2020, the SWRCB established new response levels of 10 PPT for PFOA and 40 PPT for PFOS. On Mar. 5, 2021, the SWRCB established a response level of 500 PPT and notification level of 5,000 PPT for PFBS. GSWC received monitoring orders from the SWRCB in 2020 to sample for PFAS at several wells in the South San Gabriel system. Samples of untreated groundwater from one well had detections for PFOA (4.8 to 5.3 PPT) and PFOS (10 to 14 PPT) in 2021; however, this groundwater is treated using GAC to remove PFOA, PFOS and other volatile organic compounds. PFOA and PFOS were below the notification levels in the corresponding water samples collected after treatment. PFAS were not detected above the detection limit for purposes of CCR reporting in samples collected from the other groundwater wells.

Unregulated Contaminant Monitoring — Monitoring for unregulated contaminants helps the USEPA and the State Water Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

South San Gabriel Water System - Distribution Water Quality

<table>
<thead>
<tr>
<th>Microbiological Constituents (units)</th>
<th>Primary MCL</th>
<th>PHG (MCLG)</th>
<th>Value</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria <40 Samples/Month (Present / Absent)</td>
<td>No more than 1 positive monthly sample</td>
<td>(0)</td>
<td>Number of monthly samples positive was 1</td>
<td>2021</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disinfection Byproducts and Disinfectant Residuals (units)</th>
<th>Primary MCL (MRDL)</th>
<th>PHG (MRDLG)</th>
<th>Range of Detection</th>
<th>Average Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (as Cl2) (mg/L)</td>
<td>(4.0)</td>
<td>(4)</td>
<td>0.5 - 3.9</td>
<td>1.4</td>
<td>2021</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
<tr>
<td>HAAS (Sum of 5 Halogenated Acids) (µg/L)</td>
<td>60</td>
<td>n/a</td>
<td>ND - 8.5</td>
<td>2.4</td>
<td>2021</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
<tr>
<td>TTHMs [Sum of Trihalomethanes] (µg/L)</td>
<td>80</td>
<td>n/a</td>
<td>ND - 34</td>
<td>12</td>
<td>2021</td>
<td>Byproduct of drinking water disinfection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Constituents (units)</th>
<th>Action Level</th>
<th>PHG (MCLG)</th>
<th>Sample Data</th>
<th>90th % Level</th>
<th>Most Recent Sampling Date</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (mg/L)</td>
<td>1.3</td>
<td>0.3</td>
<td>None of the 33 samples collected exceeded the action level.</td>
<td>0.46</td>
<td>2020</td>
<td>Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead sampling in schools and residential plumbing</td>
<td>Action Level</td>
<td>PHG</td>
<td>Sample Data</td>
<td>90th % Level</td>
<td>Most Recent Sampling Date</td>
<td>Typical Source of Constituent</td>
</tr>
<tr>
<td>Lead (µg/L)</td>
<td>15</td>
<td>0.2</td>
<td>None of the 33 samples collected exceeded the action level.</td>
<td>ND</td>
<td>2020</td>
<td>Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits</td>
</tr>
</tbody>
</table>

(b) The State of California made lead sampling in schools mandatory with a compliance window through 2019. This table includes data only on constituents that were detected.

1.800.426.4791 or at http://www.epa.gov/safewater/lead.
For People with Sensitive Immune Systems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as those individuals with cancer undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, some elderly populations, and infants, can be particularly at risk from infections. These people should seek advice from their health care providers.

The USEPA and Centers for Disease Control issue guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants. To obtain a copy of these guidelines, please call the USEPA's Safe Drinking Water Hotline at 1.800.426.4791.

For additional information, please contact our 24-hour Customer Service Center at 1.800.999.4033 or email us at customerservice@gswater.com.

Risk to Tap and Bottled Water

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 1.800.426.4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the layers in the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal or human activity.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Contaminants in Drinking Water Sources May Include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, and farming
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities

Cross Connection Control Program

Golden State Water Company's Cross Connection Control Program provides a level of certainty that the water in the company’s distribution system is protected from possible backflow of contaminated water from commercial or industrial customers' premises. For additional information, visit http://www.gswater.com/protecting-our-drinking-water/.

Flushing

Hydrant flushing is an essential maintenance procedure that all water providers must perform periodically to ensure the water delivered to customers meets state and federal drinking water standards. GSWC is using NO-DES (Neutral Output-Discharge Elimination System) flushing in several of our service areas to help flush our distribution systems sustainably.

Traditional hydrant flushing discharges hundreds of thousands of gallons of water onto the street. GSWC's NO-DES trucks and trailers offer a new maintenance technology, connecting two hydrants to a complex filtration system which cleans the water and returns it to the distribution system.

For more information about hydrant flushing, visit http://www.gswater.com/flushing.
Infrastructure Investments
Water providers have a duty to maintain the local water infrastructure to ensure that the delivery of reliable, quality water is not compromised. At GSWC, we take that responsibility seriously.

In 2021, GSWC installed approximately 109,200 feet of pipeline, 3,000 service lines and 300 fire hydrants throughout the state. Proactive system investments like these are critical to protect the quality of water we serve to the customers and to avoid the costly and sometimes dangerous effects of deferring maintenance.

Customers interested in learning more about current and completed infrastructure projects in their service areas are encouraged to visit their service area's webpage at www.gswater.com.

Conserving for California
It's important that all Californians continue using water responsibly, as many parts of our state are experiencing extreme levels of drought. We must all work together to protect available water supplies. As Californians, it is our duty to make conservation a way of life and protect this precious and scarce resource.

GSWC is proud to be your conservation partner. It is important that we all work together to incorporate water-use efficiency into our daily lives.

To learn more about conservation programs and/or water-use restrictions in your area, please visit www.gswater.com/conservation or call 1.800.999.4033.

A drought-tolerant garden.